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thermal background radiation. 

Essentially this measurement method is based upon measurements 
of temporal coherence of received light.  The background light is 
almost totally noncoherent.  Laser radiation is partially 
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1.  INTRODUCTION 

The objective of this study program has been to 

study methods of detection of coherent or partially 

coherent optical radiation in a noncoherent background. 

This study is primarily intended for application at 

low light levels and low ratios of coherent to non- 

coherent (i.e., signal/noise) light.  This study has 

application for identifying/locating a source of 

partially coherent light (e.g., laser) in daylight or 

in the presence of thermal background radiation. 

Essentially this measurement method is based upon 

measurements of temporal coherence of received light. 

The background light is almost totally noncoherent. 

Laser radiation is partially coherent, and can, in 

certain cases approach total coherence. 

 ' • —* -•••••••-  _. 



2.  REVIEW OF METHODS FOR MEASURING 

TEMPORAL COHERENCE 

One of the classical methods of measuring temporal 

coherence is based upon a form of interferometry.  In 

such methods the beam of light whose coherence is to 

be measured is separated into two beams.  One of the 

beams is time delayed relative to the other (e.g., by 

introducing a path length difference), and then the beams 

are recombined in such a way as  to form visible interference 

fringes. The interference fringe contrast ratio is a 

function of the temporal coherence which is being sought. 

This interferometric measurement could, in principle, 

be used as a method of detecting laser radiation.  However, 

it tends to be useful for detecting a temporally coherent 

source only at large signal levels and large signal/noise 

compared to the intent of our investigation.  Thus our 

study will be devoted more to techniques of measuring 

temporal coherence which operate at the lowest possible 

levels. 

There are several methods for measuring temporal 

coherence which are applicable to low signal levels. 

Each of these involves measurements of statistical 

parameters of the photon arrival rate.  The signal 

detection method which we have studied in our investigation 

uses photon arrival rate statistics to estimate various 

.,_^,..- •,;.,..,..  - - ._- ,B|| ..      



 ••" 'I 

moments of the statistical distribution function for the 

photon arrival rate.  We will demonstrate shortly that 

these are distinctly different for coherent and noncoherent 

radiation. 

In a later section of this report we describe 

instrumentation and procedures for estimating the moments 

of the photon arrival rate distribution function from 

finite numbers of observations.  From these we describe 

a signal processing method which leads to a definition 

of a signal-to-noise ratio from which the signal detecta- 

bility can be assessed.  We further determine the size of 

the sample space required for acceptable confidence in 

the detection of the coherent radiation. 



3.  BRIEF TUTORIAL REVIEW OF 

TEMPORAL COHERENCE 

The temporal coherence of an optical field is 

a measure of its ability to produce stable time 

independent interference fringes.  The temporal coherence 

can equally well be represented in the time or frequency 

domain using classical statistical concepts. 

In classical statistics the temporal coherence of 

a scalar stationary random process V(t)  is given by 

the autocorrelation function Rrr(T)  or the power spectral 

density Wv(w) 

RV(T) Lim 
T-»-«> 

±rTv (t) V(t + T)dt 

Wv(u) 
-/"* 

(T) e    dx 

In the semi-classical approximation (i.e., ignoring 

quantum effects) these same functions are useful for 

representing the temporal coherence of any Cartesian 

component of an optical electric or magnetic field. 

A linearly polarized optical field is conveniently 

represented by the complex amplitude U which is 

related to the intensity I by: 

I = , 2       * u  = uu 



.' 

This scalar amplitude is proportional to the electric 

field peak amplitude  E 

U  = 
f2n fc"0 

where 

E  =  ||E|| 

E = vector electric field 

nQ = wave impedance 

In the above both U and E are complex analytic functions 

which are derived from the corresponding real electric fields. 

The coherence of an optical field is represented 

by the mutual coherence function r(r., r"2, T)  where: 

T 

T(x1§   r2,   x)  = Lim | J   *  U*(rr
1,t) U(r2, t + t)dt 

where 

r.. _ = vector positions 

T • time difference 

It is convenient to denote  r(r., ?2, x)  by the symbol 

r12(x).  In this entire discussion we are assuming 

that U is ergodic. 

From this definition of the mutual coherence function 

the corresponding frequency domain function G(r., r_, v) 

can be found: 

8(rx, r2, v) • J       :(r1r2-)e
l2nv dt 

• I  II 1l Mil N.I I  L^^^X 
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This function is called the mutual spectral density or 

sometimes the cross spectral density. 

In most calculations it is helpful to use normalized 

functions.  The normalized mutual coherence function is 

called the degree of coherence and is denoted 

Y(^1^2x) = Y12(T) 

r(r,r,T) 

(Hr^O) rr2r20}
1/2 

Note that Y12(T)  *s b°unded: 

IY12(T)| < i 

The corresponding normalized spectral density Sno^ 

is given by 

9l2(v)  = f^  Y12^)
e -i2nvT - dx 

G12(V) 

fQ    
G12(v)dV 

There is an important special case when considering 

light from a laser.  Laser generated light occupies a 

very narrow spectral width Av.  In this case the 

normalized spectral density can be approximated by: 



Av Av g(v)  - g     <v> - Y~    <_    v  <  <v> + j- 

where 

<v>  = average frequency 

Av  =  linewidth 

ÄJL << i 
<v> 

In this case the normalized degree of coherence is given 

by 

Y12(T)  =  Y12(0) YU(T) 

where 

Y
11

(T)
  

=  Sinc ~T~ 

. 2n<v> .    . _1 -ÖT" (rrr2> 
Y„(0)  =  „  * l/2 / I, § ^  ds 

rT j -ii  ./ fi,  * 

and where 

I  = source intensity s 

I,  =  intensity at vector position r, 

T    = ii       n      n n ~ 

2 r2 

r, _  = distance from differential source 

position di  to points 1,2 

respectively 

ds = differential element of area at 

light source 

  . . . _. . .   -——^-t— , miii-       -    • ••""  •— 
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E  = entire source area which is 

radiating light 

This particularly important special case is known 

as the Van-Citterr - Zernike theorem.  It has the importance 

of separating the spatial coherence y-i2(0)  
and the 

temporal coherence which is given by Yii(T)•  In the 

remainder of our work we will make the simplifying 

assumption that the light whose temporal coherence we 

are attempting to measure occupies a very narrow spectrum 

Av compared to the average frequency  <v>.  Thus in 

this study we are attempting to measure  YIJT)  by 

various methods rather than attempting to find YT2(Z). 

The method which we have been studying for the 

measurement of y^.(x)     is based upon measurements of 

the statistics of photon arrival rates.  This study 

has been motivated by the work in Ref. 4 which showed 

the relationship between Y-iitt)  and photon statistical 

measurements.  There it is shown that for light having 

Gaussian amplitude statics we have: 

PC(T) = n < Kt) > [l + IY11(T) I2] 

where 

Pc(x)  = probability of receiving a 

photon at time  t + T  given 

a photon at time  t 

^  
^^to_  -             L I < ••  ^       -----   -—*--•---•---—-  -' -.—.,-- n-*--~.-H. ._„ .....^_  „  ...   ..    •-,  * ,--•-, .»UM.. 
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<I(t)> = average light intensity 

n = detector efficiency 

<n>  =  average number of photons 

generated/unit time by <I(t)> 

This formulation is not strictly applicable to the 

detection of laser light because the latter does not 

have Gaussian amplitude statistics.  However it is shown 

(Ref. 4) that noncoherently generated photons have a 

tendency to bunch together having a nonuniform arrival 

rate; whereas perfectly coherent constant amplitude light 

has a uniform arrival rate.  This result suggests that 

the arrival rate statistics are different for coherently 

generated photons that for noncoherently generated photons. 

A significant portion of the research conducted during 

this study program has been devoted to a careful investi- 

gation of the statistics of photon arrival rates. 

Section 5 of this report describes the results of 

our theoretical study of photon arrival rate statistics. 

There it is shown that certain of the statistical 

moments for the photon arrival rate are sufficiently 

different for coherent and noncoherent light to provide 

the basis of detection of the former when concealed by 

the latter.  In Section 6 we define a signal quantum 

from which it is possible to detect coherent light in a 

noncoherent background. 



4.  INSTRUMENTATION FOR OPTICAL SIGNAL 

DETECTION METHOD 

The method which we are studying for detection 

of coherent radiation can be understood with reference 

Kt) I,nJt) inc 
Optics Detector 

id(t) 
Electronic 

Switch 

i sm Digital 
Signal 

Processor 

1 
Statistical 
Parameters 

Figure 1 

This figure is a block diagram of a portion of the 

optical signal detection instrumentation.  This 

instrument/ which is presumed to be receiving light from 

some region of space* receives light having intensity 

I.    from that space.  This region of space is that inc 

portion contained inside a solid angle which is deter- 

mined by the instrument optics. 

The optics include a lens system which might, 

for example, be a telescope and possibly some sort of 

preselector or filter such as a Fabry Perot etalon. 

The parameters of these optical components are a function 

of the intended application of the system.  For example, 

in attempting to detect the radiation from a particular 

type of laser at one of its known wavelengths, it would 

10 
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be reasonable to remove the light outside of the 

inhomogeneously broadened linewidth for that particular 

laser and wavelength by means of an optical filter. 

Referring to the previous section we assumed 

that the spectral width of the optical source  Av  is 

small compared to the mean frequency <v>.  The preselector 

filter which we mentioned above is a means of achieving 

this narrow spectral profile. 

Other factors which influence the specification of the 

parameters of the system optics are:  the desired region 

of coverage, the total number of wavelengths which must be 

covered and the corresponding linewidths/bandwidths.  In 

this study we presume that the incident light is filtered 

about a center frequency v  where v  is the 

average optical frequency over the filter passband 

(i.e. , v, = <v>). 

The light which emerges from the system optics 

reaches the active area of a photo detector.  In our 

study we are considering low light levels and low 

signal/noise.  A detector of great sensitivity will be 

required for this purpose which in limiting cases 

should be capable of detecting individual photons. 

That is, the detector output signal must rise above the 

quiescent noise level in the presence of a single photon. 

Moreover we will be concerned with rapid variations 

in the intensity of the light.  The detector should be 

capable of responding to variations in light intensity 



which occur in intervals on the order of nanoseconds. 

This implies a detector having a bandwidth of the 

order of a few GHz.  The combination of large effective 

detector bandwidth and sensitivity suggests chat the 

detector will probably have to be a cooled photo multiplier 

However, it is not the purpose of this investi- 

gation to develop a design for an instrument.  Therefore 

we will not pursue the characteristics of the detector 

further than to say that it must be capable of detecting 

very small numbers of photons and must have a bandwidth 
9 

in excess of about 10 Hz. 

In the remainder of this report it will be assumed 

that the detector is a photo multiplier having a 

multiplication factor M .  That is the ratio of anode pm 

current i, to cathode current ir(t)  is given by: 

U    -     M 

The cathode current is determined by the number of 

incident photons, by the quantum efficiency of the 

cathode and by the optical frequency.  Assuming that the 

average energy per photon in the filtered light reaching 

the cathode (i.e., hv ) is sufficient to overcome the 

cathode work function, then some nonzero fraction of 

the incident photons will generate free electrons at 

the cathode.  Denoting the number of incident photons/ 

unit time which strike the cathode N  and the number 
P 

of liberated electrons/unit time N , then e 
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N. CN 
P 

where is the cathode quantum efficiency.  It is 

convenient to call N  the photon flux rate. 
P 

This photon flux rate is linearly proportional 

to intensity  I(t): 

•  - TT-    f I ds 

where A,  is the active area of the detector which 

received intensity I.  In writing this expression we 

assume normal incidence upon a planar cathode.  For 

our analysis we make the simplifying assumption that 

I  is uniform over A,  for which we obtain: a 

N 
I A. 
 c 
hv 

The cathode current is  i  given by 

i  • q N c    * e 

and the anode current is given by: 

i  s qN nm a       e pm 

In writing these expressions we have ignored the 

transit time of electrons.  Ignoring these effects is 

equivalent to assuming that the detector has infinite 

detection bandwidth.  We will make this assumption 

throughout this report. 
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Our signal detection method is based upon the 

statistics of the photon flux rate.  In collecting data 

for the required statistical calculations it is necessary 

to sample the detector output current.  This is 

accomplished by means of a very fast electronic switch. 

Denoting the switched output current i „^  ^or 

the mth sample we can write 

i« m <*>  " *•* (t)     tm < t < t + T s,m        a m —     m 

=   0 tn,  + T<t<  ^4.1 m    —     m+l 

t  = rax m 

m = 1, 2, ... ,  M 

T = sampling period 

T = sampling interval 

T > T 

M = number of samples taken 

It will be shown presently that there is a 

difference in the statistics of total number photo- 

electrons which are generated in an interval T  for 

coherent and noncoherent light.  We define, therefore, 

the integrated sampled photon arrival rate  n m 

/•tm+T 
nm   "  J K-  <*>  dt m    J. e 

fcm 
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k-f vt,dt • ^r 
t m m 

ion dt sm 

We can relate  n  to the intensity  I(t)  by m 

using the relationships presented above: 

..     t +T QA,     r    m 

4 «i. 

t +T m 

- n /   Kt :) dt 

where 

n = 
hva 

The instrumentation depicted in Fig. 1 is assumed 

to include a digital processor.  This processor will 

collect data  (n )  from M samples and compute m 

various statistical parameters on this sample space 

as indicated below. 

  



5.  THEORY OF OPTICAL SIGNAL DETECTION METHOD 

For an understanding of the present optical 

detection method it is helpful to examine the relation- 

ship between the statistical distribution function for 

the photon arrival rate and the optical intensity I(t). 

For our study we need the probability p(n, T) (i.e., 

ergodic statistics) of emitting n photo electrons in 

time interval from t to t + T where T is fixed. 

It is shown in Ref. 1 that for perfectly coherent light 

of intensity I(t)  we have: 

i r rt+T   •   nn   r  rt+T   •   n p(n,T,t)     =    —- n J I(t )dt        exp -n J I(t)dt 

Note that this reduces to the Poisson  distribution if 

the mean number  of emitted photo electrons is denoted 

<n>: 

p(n,T) - jL (nw)n e"nW 

where <n> « nW 

r t+T 
W = J Kt )dt 

t 

CA 
n = 

d 
h<v> 

—.  

C = quantum efficiency of detector 

16 
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<v>  * average optical frequency 

h "  Planks constant 

Per noncoherent light  I;t )  is a stochastic 

process and the photon counting distribution must 

be averaged over all possible  I(t). 

P(n, T)  = iy <(nW)n exp (-nW)> 

" nT /  <nW)n exP (_nW) p<w> dW 

We can illustrate the use of this relationship by 

finding p{n, T) for an ideal amplitude stabilised laser. 

In such a case the probability density function p(I)  for 

the intensity is given by: 

P(I)  =  6(1 - <I>) 

where 

<I> = average intensity 

and where  6(«)  is the Dirac delta function.  The 

integrated intensity  W is given by 

W -  IT 

The photo detection equation becomes: 

p(n, T)  = jL. <nw>n e"<nW> 

- ..i.  

  -. 
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<n>n -<n> 
•  irr e 

where <n> = n <IT> = n<l>T  is the average number of 

photo electrons  generating in an interval of duration 

T.  Note that this is the Poisson distribution. 

Another important special case merits attention. 

We consider the photon counting distribution for a 

thermal source.  An optical field, which is generated 

by a thermal source composed of many independent atomic 

radiators, consists of many different frequency components 

occupying a fixed band.  From the central limit theorem 

it can be concluded that the resulting optical field 

corresponds to a zero mean Gaussian random process in 

scalar amplitude. 

Assuming a linearly polarized thermally generated 

optical field then the complex scalar amplitude can be 

denoted U where: 

U = Ur + i U\ 

and where 

U  = ReU 

U.  •  Im U 

The joint probability density function for these 

components are given by: 

P(Ur , u.)  = -Sr exp -  r 2      ) 

^^•fcMjMi    -i  - -.-....•^••1[|,|,, ,ir,, , Jlf,|M., ^-itf-^tMif..» ».^m^——ü»i i •' *•'•  *•» 



2 where a       is the variance in the intensity  I: 

I = lul 

7 i i 2      <i: 
c/     =    Var (|ur)  = -f- 

We can write this joint density function in 

polar form where 

U =  |ü|e i* 

ü /^n?. 

tan <J>  = 
U. 
l 

u_ 

Letting  |u| = /T we obtain 

P(/I, <D)  = 
/I 

2na: 
exp "(Ä 

/I        <I> 
e n<i> 

This probability density function is independent of 

the phase 0 of the scalar amplitude.  Thus we can 

integrate the joint density function over <J> to obtain 

the probability density function for the intensity 

alone: 

y.2n 
PUT, *)d4 

n 

2/T 
<I> 

I 
<I> 
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This function can be further converted from a function 

of  /T to a function of  I  by noting 

dl  =  2 /I d /I 

Thus we obtain 

P(I) -   ^e'<^> 

In our instrumentation we will be using very fast 

detectors whose outputs will be sampled for very short 

intervals compared to the time in which I(t) changes 

appreciably. In this case letting T be the sampling 

interval we can approximate the integral for W as 

follows 

-t+T 
w =   /    I(t ) dt 

%  IT 

From this we obtain for p(n, T): 

I 
<I> 

p(n, T)  = J     ^•^L-  exp (-nIT) s_ f   min^ exp (-nIT) ^ 

<n>n 

1 + <n>1+n 

where  <n> = n<I>T is equal to the average number of 

• •  •    - -• [ 
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photo electrons generated in the interval T by the 

thermally produced intensity I. 

Observe that  ?(n, T)  is different for the two 

special cases which we have considered.  Moreover the 

functions  p(n, T)  for a practical case is also 

different from that for thermally generated light. 

It is the difference in p(n, T)  which serves as the 

basis for our method of detecting laser radiation. 

To enhance this notion it is instructive to consider 

the mean and variance for these two distributions.  If 

we imagine that the light which is incident upon our 

detection apparatus is totally coherent then we can 

denote the optical intensity Ic(t)  and the number of 

photo electrons generated in the sampling interval T. 

We further presume that this light is generated in a 

perfect amplitude stabilized laser such that the 

Poisson arrival rate statistics apply.  Denoting the 

mean photon arrival rate  <nc
>  the variance is given 

by 

V(nc)     = 

2     ~<nc> 

•        (nc -  <nc>)     e nc 
I        j  <n.> 

n-1 ncl 

=     <"c> 

This result is a well known property of the Poisson 

process. 

-—— :-* ...f.., 
*»• •• «, . 
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On the other hand, assuming that the incident light 

is totally noncoherent we denote the intensity  I.  and 

the numbers  n.  of photo electrons generated in interval T. 

Denoting the average of this number of photo-electron 

<n.> we obtain for the variance: 
l 

2     ni 00  (n. - <n.>)  <n.> 
V(V   •     * — —r+K— 

i     (1 + <n->) 

= <ni>(l + <n.>) 

Note that if we take the ratio of variance to mean 

for the two cases we have the basis for discrimination 

between coherent and noncoherent radiation.  We denote 

this ratio S„ and S.  for coherent and noncoherent c       i 

respectively and obtain: 

V(n ) 
S  = -—°- -1  =  0 c    <n. > 

V(n.) 
Si = <H3- = X +  <rV  " l    " <ni> 

These functions are sketched in Fig. 2.  By measuring 

the mean and variance of the detected photo electrons 

we can, in principle, distinguish perfectly coherent 

from perfectly noncoherent light.  Note that it is 

advantageous to pick T  large enough such that 

 --IIHiHHH i n 
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6.  FORMULATION OF SIGNAL DETECTION PROBLEM 

In the previous section of this report it has been 

shown that the statistics of the photon arrival rate 

are a function of temporal coherence.  This influence 

of coherence is expressed by the probability density 

function for the number of photons n counted by a 

photo detector: 

p(n)     = (n • m1-  1) I    (l + ^r)_n   i1  + ^f)       e*p[~ ^H] 

Jn       j      <n,> (<n. > + m 

where 

!»-! , , 

<n. > 
i 

<nc> 

= the Laguerre polynomial 

m • number of modes in the 
optical field 

average number of noncoherent 
photons counted in an inter- 
val T 

average number of coherent 
photons counted in T 

The number of modes m of the optical field is deter- 

mined by the receiver optics.  It is shown in Ref. 1 that 

this number of modes is given by: I 

m • 
SS   T 

RV 
T 

25 

- - —- J 
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where 

S = detector area 

S = source area 

R • distance from sound to detector 

A = optical wavelength 

T • sampling interval in which 
photon rate is 

T = coherence time of source 

In the proposed instrumentation, the detector output will 

be sampled for a time T.  The number of photons in the 

mth sampling interval of duration T is denoted n . m 

If this sampling is taken near the nyquist limit, then T 

will be of the order of the reciprocal of the detector 

bandwidth  ß,: 

T  ^  A 
6d 

— 6      -9 
A typical value for T is in the range from 10  to 10 

In most applications the wavelength of the laser 

being sought is known.  In this case it is reasonable to 

utilize an optical preselector to filter the light reaching 

the detector.  A Fabry Perot etalon is an example of such 

a preselector. 

Normally it is desirable to have the preselector band- 

width as narrow as possible for maximum pre-signal proces- 

sing signal/noise.  A Fabry Perot etalon is commercially 

^- •• -•-*• • •  «.. »^. 
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o 
available having a bandwidth AX  of about 1A.  The light 

emerging from a filter of this bandwidth will have a 

"coherence time"  T  of the order of 

X2 T  "  CAA 

o 
where C equals speed of light and X    wavelength.  A 1A 

filter resonant at  1 um will yield a coherence time of 

about  10    sec. 

It is instructive to estimate the number of modes 

in a filtered optical field for a typical set of optics 

that could be used for detecting coherent light in a 

noncoherent background.  The following "reasonable" values 

are taken for the parameters in the expression for m: 

s ~ 1 2 cm 

s1 ~ 1 2 m 

R ~ 1 Km 

X ~ 1 um 

For this representative example the number of modes is 

given by 

m •  100 

In general the number of modes in an optical field appropriate 

for the proposed signal detection scheme will be in the 
4 

range   100 < m < 10 .  However, at times, single mode fields 

••*—'" •••••'  -  •-- • • • n- 
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will be considered in the following analysis for simplicity 

in interpreting certain results. 

The objective of this investigation has been to find 

means of detecting coherent photons in the presence of 

noncoherent photons.  This is accomplished by measuring 

various moments of the distribution p(n)  and by knowing 

the influence of nonzero  <n.>  upon these moments.  Earlier 

we showed that the variance of p(n)  depends upon  <n.> 

and  <nc
>-  In doing so we demonstrated the variance for 

the two special cases; (a) <n.> = 0  and  <n > ^ 0 and 

(b)  <n > = 0  and  <n.> ?  0. 

It is instructive to consider the variance V(n)  for 

the above density function in the case of combined coherent 

and noncoherent light because this is the applicable case 

for the detection of coherent light in a noncoherent back- 

ground. 

The variance of p(n)  is most easily computed from 

the recurrence relation for the moments  <n >.  In Appendix 

A it is shown that 

k+1 k 
<n  >  =  <n + n.xn >  +  < c    1 

(<n.>\ »^ k^ 

"c^1  ""ST"/ 9^V 
+  <n > ll + 

where m is the number of modes of the optical field 

being investigated.  The coherent and noncoherent photons 

.l<J«ltMM^*M<^JJ1»i,„,..^ i^t..^^... ••.,,..^^-.J .-,.  .,.,... .,^. .... -      i II-IO-   -  *•  •- '  - -•-—»--"»—•* 
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are independent because they are generated by independence 

physical mechanisms.  As a result the first moment of p(n) 

is given by 

<n>  =  <n + n.>  =  <n >  +  <n.> c    1       c       i 

From the recurrence relation the second moment is 

found to be: 

<n2> -   (<V + <v)2 + <-i»fr • '•£) + <v(» + ^) 

The variance [i.e., V(n)] in p(n)  is given by 

V(n)  =  <(n - <n>)S 

2      2 =  <n > - <n> 

" (<nc> + <rv)2 + «VV1 + -IT") 

(l +  2-^)-   (<nc> + <ni>)2 

(2<n.>\       /   <n.>\ 
1 +  i-) + <n.>(l + ——) m  /    l y    m  / 

+ <n > (1 +   c V    m 

= <n_>(1 + 

It is convenient to define the ratio of average coherent 

to noncoherent photons 

r = 
<n > c 
<ni> 

Using this notation the variance V(n)  becomes: 

V(n)  =  <n: 
r   fi +  2<n> 1 +   

1   L +  <n> 
1 + r^  m(l+r)J   1 + r [x  m(l+r) 

 •   • *«•" 
in r ii "^ • - "^*** 



30 

Note that this variance which depends significantly 

upon r can serve as the basis for detecting coherent 

light.  Totally noncoherent light corresponds to the 

special case  r = 0.  Totally coherent light corresponds 

to the limit as  r  tends to infinity.  For any given 

signal/noise (i.e., for any given r) the detection of 

coherent light involves distinguishing between V(n,r) 

and V(n,o).  It is the purpose of the following analysis 

to consider the process. 

6.1 Definition of Signal 

In attempting to detect temporally coherent light 

in a noncoherent background from the photon arrival statis- 

tics, the received signal must be sampled.  In the proposed 

scheme, the number of photons is counted for an interval 

T repeatedly.  Denoting the number of photons received in 

the mth sample M , then an estimate of the variance V m 

of n can be obtained 

V(n)  =   1  . I     (n - <n>)2 
N
     l  m-1     m 

m=± 

where 

,  N 
<n>  = i £  nm 

m=»i 

i.e., <n>  is an estimate of the mean number of photons in 

an interval T and where N  is the number of samples 

taken. 

• "• *•  ' •••• •*" ' - •- - --     ••-     *-.-   - - •—-•-  J 
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For mathematical convenience we assume that N is 

sufficiently large that the estimate of  <n>  is essentially 

an accurate measure of  <n>: 

<n> <n>  = Lim <n> 

It is inadequate to consider the variance of n for our 

purposes.  However the relationship between variance and 

mean of n can serve as the basis for detection of coherent 

light. 

In Section 5 of this report we introduced a definition 

of signal: 

s " ^nT~ - 1 

We use a similar definition here for S, which can be 

written in the following form: 

S = - 
v(n) 
<n> - 1 

<n> 1 + 2r 
m  (1+r)2 

It is important to recognize that the proposed 

instrumentation scheme for detecting coherent light is 

capable of only estimating S.  That is denoting this 

estimate S, the proposed instrumentation can perform 

computations leading to a value for S 
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=  Vjn) - 
<n> 

The quantity denoted S, which we have called signal, is 

the expected value of this estimate: 

s = <s> = £ims 

6.2  Post Signal Processing Noise 

For any finite sample space (i.e., finite N) the 

estimate of S will be in error by an amount denoted  e 

e = S - S 

where e is a random variable.  A convenient measure of 
A 

the size of the error e  is the variance in S, i.e., 

V(S)  = <(S - S)2> 

=  <c2> 

[V(n)   ,  V(n)   ,T* 
^nT •   " <n>    J 

[V(n)   V(n)]: .    ,^---,J2> 

In principle we could expand the above expression in 

terms of the variance of V and  <n>.  However, the compu- 

tations are unwieldy and will yield results that are not 

readily interpreted.  Fortunately for relatively large 

"  i      :.-*-**-.—~ .-• ...... r-...Mi.aB 
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sample space (i.e., large N) the variance  <n>  is small 
A 

compared with the variance in V: 

V[<n>]  =  HISÜ.  «  v[v(n)] 

The validity of the above inequality can be established 

by numerical example.  In this case the following approxi- 

mation can be made: 

<n>  » <n> 

Substituting this approximation into the expression for 

V(S)  yields 

(S)  *  —^v[v(n)] 
<n> 

It is shown in Ref. 3 that v[v(n)]  is given approxi- 

mately by 

vLv(n)]  S  —=—N - 

where u4 and vu  are the fourth and second central 

moments of p(n)  respectively: 

u4 =  <(n - <n>)4> 

4 Z     (n - <n>)  p(n) 
n=l 

2 
U2 =  < (n - <n>) > 

'«•—•• I  •»»»«—M^^..^ ^J-......|     M r. ,     .........  , „ 
I ...... - - -* 
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2 IU •  I  (n - <n>)  p(n) 
4 n=l 

It is possible to evaluate  u4  and  u_  from the 

moments  <n > (k = 1, 2, 3, 4) using the recurrence rela- 

tionship that was developed in Appendix A.  In Appendix B 

it is shown that the variance in the signal is given by: 

.2 
V(S)  = —^-5- j6 -£ 

N<n>  I  (1+r) 

+ 

!2>i d  + <n> \ A + 2<n> \ 
+r)2 V md+r)/^ m(l+r>y 

|_r<n> /    2<n> \ <n>  A <n> \1 
[l + r\x + m(l+r>y 1 + r \ md+rJ^J 

r<n> L  +  2<n> \ 3<n> L +  <n> \ 
[l + r \x + m(l+r)y m(l+r) V m(l+r)/ 

(-Ä)II 
In characterizing measurement errors it is common practice to 

specify the standard deviation a     (i.e., square root of variance): 

a{S) - /v(s) 

If the proposed signal detection method were implemented with ideal 

instrumentation (i.e., zero instrument noise), then the noise asso- 

ciated with this scheme results from the finite sample space from 

which S  is estimated.  A convenient measure of this noise is  o(S) 

defined above. 

N  =  a(S) o 

It is shown above that  S  is given by 

<n> 1 + 2r S = 
m  (1+r)2 

^_ • •- • 
- -        . 1-"nnrninr 1)     •    • r  Tr I n—l^liMW     'itf    ll»Ml£i 
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Figure 3 is a sketch of signal  S vs  <n>.  Note that 

S(<n>)  is a linear function of  <n>  having a slope 

1 + 2r 

MQ+r) 
•y for any given ratio  r and number  of modes m. 

The essential features of our signal detection 

problem can be understood with respect to Fig. 3.  The 

instrumentation must distinguish between a signal having 

r identically zero (i.e., no coherent light) and light 

having small but nonzero r.  The slope of the S(<n>) 

curves is a decreasing function of r having the maximum 

value at r = 0  (i.e., zero signal) and having zero slope 

for  r-»-«  (i.e., totally coherent optical field). 

<n> 

Figure 3 
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The signal detection problem involves a measurement 

of  r  in order to determine nonzero r.  If it weren't 

for noise, the signal detection problem would be straight- 

forward.  A suitable signal detection instrument would 

measure  <n>  and then S<n>  for the given (and fixed) 

m could be computed.  From this  r could be determined 

by inverting the expression for S(<n>, r). 

Unfortunately there is considerable noise associated 

with the proposed detection scheme, which places a lov/er 

limit upon detectable r.  As mentioned above, there is 

optical receiver noise, which, for convenience, is being 

neglected.  The fundamentally unavoidable noise associated 

with the proposed signal detection method results from 

the finite sample estimate of S as explained above. 

This noise explains the uncertainty in the measurement of 

S thereby placing a limit on the minimum r which can 

be measured. 

6.3  Example Signal Detection Method 

For an understanding of the limits placed upon the 

minimum size of  r which can be measured it is helpful 

to refer to Fig. 4.  This Fig. 4 is a sketch of the 

probability density function for S.  This function tends 

to express the distinction of measurement results for 

S(r)  for any given true  S(r).  Here we have depicted 

the conditional probability for  S under the two 

**** ' ' "•"•'"  ' •   ' "•'•-•      • -  - .~jMm 
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PS(S) 

Figure 4 

hypotheses r = 0 and r > 0.  The variance for these two 

conditional density functions are v[s(0)]  and v[s(r)J 

respectively.  Recall that we have shown these variances 

to be inversely proportional to the size of the sample 

space N. 

6.4 Feasibility of Proposed Methods 

In the following subsection of this report the 

feasibility of this proposed signal detection method is 

considered with respect to certain practical limitations. 

In considering this feasibility, it is helpful to consider 

a specific example signal detection method. 

In one very traditional implementation of a signal 

detection scheme a simple threshold decision is reached. 

The decision will be reached that signal is present whenever 

,km .        •-      - r   iar •-  "• -•—— —    -T iiiirnn'-iWrn    i n        -     • •*•»»—*» Urn 
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r  >  rfc 

where  r.  is the threshold signal-to-noise ratio for 

reaching the decision that the signal is present.  Referring 

to Fig. 4 this criterion for signal present is equivalent 

to the condition 

S(r)  <  St 

where  S. = S(r ).  These conditions are equivalent 

because  S  is a monotonic nonincreasing function of r. 

In the proposed implementation both  <n>  and S 

would be obtained from N  samples  n (m = 1, 2,..., N). 

In our above analysis it has been assumed that N is 

sufficiently large that  <n> ~   <n>.  With known  <n> 

and m  (i.e., m fixed by configuration), it is possible 

to compute S(0) 

s(0) = ±S> m 

The minimum desirable detectable signal level r . 3 min 

is selected, and S .  = S(r . )  is then determined. mm     min 

The threshold level  S  will be somewhere between these 

two values of S. 

S .   <  St  <  S(0) min     t 

depending upon the choice of acceptable errors. 

As in all such signal detection methods there are 

two classes of error which can be made:  (1) failure to 
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detect the signal when it is present and, (2) deciding 

the signal is present when there is none.  The probability 

of an error of the first (i.e., P ,) is given by 

00        A 

x    =   f    P1(S)dS p 

and the probability of the second type is (i.e., Po7) e2' 

/S /v 
P2(S)dS 

The relative size of these two error probabilities depends 

upon the function p, (S)  and P2(
s)  and upon the choice 

of S .  Selection of an optimum value for S.  is well 

covered in the general theory of signal detectability and 

is not considered here. 

Although this investigation is not a study of signal 

detection theory, we can consider a simplified and interes- 

ting special case for illustrative purposes.  We assume that 

p,  and p-  have identical shapes (i.e., identical central 

moments) but different mean values [i.e., S(r) ^ S(0)]. 

We further assume for mathematical convenience that it is 

desirable for p , = p _.  If this is the criterion for rel   e2 

errors, then S  should be halfway between S •   and 

S(0) : 

S(0) + S . 
c min 
St "      2 

I- -... .,  ... - 
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Furthermore the total probability of error p  in our 

simplified example is the following sum: 

PE  =  Pel  +  Pe2 

,S. 
t p,(S)dS  +  J  p, (S)dS 

0   * s, t 

For any given pair of probability density functions 

P1 and p.  (e.g., Gaussian) there is a unique relationship 

between P_/ S  and the moments of these functions.  For 

example P„ is a function of  S.  and a.   o_  (i.e.): 
Ci t X  2 

PE =  f[St' CTi(S)' °2{S)] 

where a.,  and a_ are the standard deviations of p. 

and p2 respectively. 

In a typical signal detection problem a positive 

real value between zero and unity is assigned to P_ 

representing an acceptable level of error.  Having previously 

determined the minimum acceptable ratio of signal to noise 

(r   )  and S^., we can determine the maximum values for min        t 

an  and  a_  from the allowed P_.  From these maximum 
1 2. E 

standard deviations we can determine the required size of the 

sample space  (N).  The feasibility of the proposed signal 

detection scheme can be assessed from this value for N. 

-......,.,.. 
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There are many other approaches for assessing feasi- 

bility based upon other sets of constraints. For example, 

the sample space size can be fixed by the sampling rate of 

the receiver, by the duration of the transmitter coherent 

light signal and by the computational capacity of the 

signal processing unit. However, we have chosen the above 

criteria for feasibility for illustrative purposes. 

understanding of this feasibility analysis is, 

perhaps, enhanced by specific numerical examples.  In these 

examples we select a fixed r . , a specific optical power 

level p  wavelength \    bandwidth Av and detector band- 

width ßj.  From these we compute the required sample size 

N from which S is estimated.  We select r .„ = 0.1 mm 

which is equivalent to -10 dB (power ratio) signal/noise. 

In the following examples the probability density functions 

p.  and p_ will be approximated by Gaussian functions for 

S ^ 0.  This approximation is reasonable provided the 

variances of p.  and p_ are sufficiently small or 

equivalently provided N is sufficiently large.  In our 

first example the total received optical power is taken to 

be 10    watts at an average photon energy <hv> of 

-20 10    Joule (i.e., near infrared).  We assume that the 

— 8 sampling interval is T = 10  sec which is equivalent to 

a nyquist sampling rate of a detector having a bandwidth 

of the order of  50 MHz.  The average number of photons 

received in time T is given by 

I 

i 
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<n>  = <nv> 

=  100 

In attempting to assess feasibility of this method with 

the following special cases we will refer to "large" and 

"small" value for <n>.  By such terms we imply large or 

small compared with <n> s 100 photons/sampling interval. 

The implication of the magnitude for  <n>  involved in any 

particular case with regard to optical power level and 

bandwidth can be determined from a numerical estimate 

similar to the preceding example. 

6.5 Special Case - Single Mode Fields 

Although it will presently be shown that it is not 

a physically realistic example, single mode  (m = 1)  fields 

are most easily interpreted.  The variance V(S)  must be 

determined for our analysis.  For signle mode fields the 

leading term in V(S)  for large  <n>  is 

<n>-»-<» N<n> L    v       ' J 

2 

<n>-»-<» N(l+r) 

The standard deviation a.  and  a_  are given by 

ffj  •  /v[S(r)] <n>  1 
1 + r 41 
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o2  =  /v[s(0)] 
<n> 

Note that for  r - 0.1  these two standard deviations are 

approximately equal, i.e., 

Cl  " °2 
<n> 

The criterion for determining N can be understood 

with reference to Pig. 5 which is a sketch of the two 

probability density functions  p.  and p.. 

PS(S) 

Recall that the total probability of error  P  is given 

by 

ft I t J    " p (S)dS + J      p.(S)dS 
o   a      st 

l 

MM ^_  .j . 5S  
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y\    S\ 

=  2/ p (S)dS 
St 

For the assumed Gaussian function P_  is given approxi- c 

mately by 

PE  "  2 t - -Av^a 
Taking the allowable P_ as 0.01 we obtain 

Sfc - S(r)  =  4.8 a  =  2[s(0) - S(r)] 

Earlier it was shown that  S(r)  is given by 

S(r)  = <n> 1 + 2r 
m  (1+r)2 

For single mode fields we obtain 

S(0) - S(r)  = 

•  < ">W: 

But we have shown for equal errors  (Pe. = Pe_)  that 

S(0) - S(r) =  2(2.4) 0 

"min 

4.8 <n> 

• ~W <n>r 

~ '  •  -...-.. ........... - ..  ...•• ...  - ~^. T- ^ —--,.—..i, 
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Solving the above equation for the maximum N  (rm::n) 

yields 

N   .   l±j£   s   25 x 104 
r   • min 

The feasibility of the proposed method is influenced 

by the memory capacity of the signal processing and the 

duration of the transmitted signal from which the N samples 

—8 are taken.  If the samples are taken in intervals T = 10 

sec, then the minimum signal duration for x  for all N 

samples must be 

T = 10"8 N 

=  2.5 msec 

In most practical cases a signal duration of 2.5 msec 

will not be limiting.  However, a required memory capacity 

to store 250,000 data points is totally unrealistic.  Thus 

it appears that the implementation of the proposed scheme 

using a computer or special purpose processor is not 

feasible. 

On the other hand, a minimum signal/noise of 0.4 

requires a memory capacity of only about N ~ 1000 samples 

which is clearly within the capability of a small digital 

processor. 

Although our example feasibility study is not physically 

realistic, it does demonstrate a few of the fundamental 
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compromises between system complexity and performance of 

the proposed method.  The sensitivity of the size of the 

sample space upon the required memory capacity is clearly 

demonstrated.  The following numerical example further 

expands the understanding of the influence of system para- 

meters upon performance. 

6.6  Second Special Case Feasibility Study 

Our second special case estimate of the feasibility 

of the proposed signal detection method considers multimode 

fields.  In this second special case we once again assume 

relatively large number of received photons (<n> a 100) in 

the sampling interval T. 

The number of modes m associated with the optical 

field can be computed from the configuration depicted in 

Fig. 6.  It has been shown above that m is given by 

SS1 Av 
m =  ~T~2— 

We assume the following reasonable values for the parameters 

of the expressions for m: 

1 2 
Sx =  0.1 nT 

S • in"4      2 
10       m 

R = 1  Km 

A = 1  ym 

Av • 10"10 

ßd = 108 

 .-. _- ._. .. . . -.:-  -v,^....„. .. - .—_. .^, ^.-..^.^.Ä,  „.^.^^i^v-.. -....*. --,.*-•• 
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Optics 

Detector ^A \***- 

A^V- s 

Signal 
Processing 

Source 
Area  = S' 

Detection 
Criterion 

Figure 6 

Substituting these numerical values into the equation 

for n yields: 

m = 10~4 x IP"1 x 102 

106 x 10'12 

For the above values of  <n> and m the leading 

term for V(S)  is given by 

V(S) <n>      1 

^7      N 

lamrrtriim-ii • mr» --     -••••••  •       -•         -    •      •-*•       — •    .»^^ttMÜMil 
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fl 

The standard deviation for p.  and p_  is given by 

a  = 
/N 

For a total Pp = 0.01 we have once again (assuming 

Gaussian functions): 

S(0) - S(r) 4.8 a 

<n>/ r V 
m \1 + r/ 

_5_ 

Solving for N yields: 

N s  25 «w 
Taking r .  • 3 and using the above determined values min 

for m and  <n> yields: 

N  S  7500 

This is a reasonable sample size for a small general 

purpose computer or processor.  If the memory capacity is 

increased to 16 K, then r .   is reduced to only mm 

nun r 2.3 

Thus it appears that the proposed method is applicable 

for signal/noise of about 6 dB. 

<- - i    i 
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6.7 Third Special Case - Small  <n> 

The third special case for which the feasibility 

of the proposed method is investigated is for small  <n> 

(small compared with unity).  The leading term in the 

expression for V(S)  in this case is: 

V(S) <n>-*0 
1  {<n>} 
T 

<n> N 

<n>N 

The standard deviation for this case is given by: 

a = 
/<n>N 

The criterion of a 0.01 total P  is then. 
St 

S(0) - S(r) =  <B>/ r—V 
m \l + x) 

Solving for N yields: 

=  2 a 

/<n>N 

N 4 m2 /I +  rV 
=  <n>2V r ) 

In interpreting this equation it is sensible to fix 

a reasonable value for N    and to find the value for max 
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<n>.  We have shown that for a typical configuration m z  10 . 
4 

A reasonable upper bound for N is of the order of  16 x 10 , 

If we arbitrarily select  r = =• , we find 

<n>  ja  (20)  3  =  0.3 

This corresponds to an optical power of 

r,     <n> u P = -7p- hv 

-20 10 ^  x 0.3 

10"8 

0.3 x 10~12 watts 

6.8  Fourth Special Case - Optimum <n> 

The next special case which we consider involves the 

selection of  <n>  for minimum variance in our estimate of 

signal  S.  For a given optical power level we can choose 

<n>  by selecting the sampling interval T  (neglecting 

physical constraints). 

<n> - ?Kv7T 

It can be shown from an upper bound for V(S)  that 

there is an optimum  <n>  which minimizes the variance and 

hence the standard deviation  a. 

As we have already shown the standard deviation repre- 

sents the post signal processing noise.  In the following 
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analysis we compute the average number of photons which 

are counted in the sampling interval T  for which V(S) 

is minimized.  This simultaneously minimizes the standard 

deviation and noise.  Thus the present special case can 

be considered the minimum noise case. 

In Appendix C the following approximation is estab- 

lished for V(S)  for single mode fields: 

V(S)  < 2 (1+y>)2[6(l+r) +7nT] 

Note that this function asymptotically approaches infinity 

for  <n> •* 0  and for  <n> •*• °°.  Hence there must be a 

positive real  <n> which gives minimum V(S)  and hence 

minimum noise. 

Letting A = H V(S)  and a = <n> we can find the 

value of a which minimizes A by differentiating: 

3a (l + 2a) (* + !)- = 4 11 + 2a (l+2a) 

=  24 a  + 2a - 1 

(6a - 1) (4a + 1) 

The minimum for A occurs for 

3  =  6 

which yields 

min V(S)  = 8 
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(12) 
N 

64 
3N 

It is further shown in Appendix C that for multimode 

fields the variance V(S)  is given approximately by 

It is also shown there that this variance is minimized for 

- 1 + m 
a • 

f m 
+ 16 bm 

8b 
m 

where 

a = value of  <n> which minimizes V(S) 

b =  1 + ^ + 6r m 

Earlier we have shown that a practical realization of the 

proposed signal detection method involves m of the order 

of  100  to 1000.  For m greater than about 100 a(m) 

is given approximately by 

/ %    1 J    m a(m) ~~   2 ill it 

- '- — ^- "II • - -1i IHMMIii'ti • ii i> ii      rij 
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Figure 7 is a graph of a(m)  for a few representa- 

tive values 

100   — 

a(m) 

Notice that as the signal/noise increases for any given m, 

the required average photon count  (<n>)  decreases for the 

minimum noise case.  Notice further that in the normal 

operating region (100 < m < 1000 and r < 1)  the average 

number of photons in a sampling interval T  is about  10. 

For m > 100  (the typical case) the variance V(S) 

is given by 

— »m  d^d^^^BMM 
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1 » 6r 
9 

The total probability of error P„ will be less than or 

equal to  0.01  provided 

S(0) - S(r)  =  ^L I     )       <     5 Vv(S) 

=  5 1      N 

The required sample space size for this case is given 

by 

N  =  25(H-6r) „A+J-V 
i.nr-   v r / 
2 ll+6r 

^  i/, . A4 
=  50(1 + 6r)2  m2. M 

If the memory capacity is limited to  16 K, then the 

minimum r  is given by about 

min r  ~  1.4 

This shows an improvement of about a factor of  2  over the 

minimum detectable signal/noise in the large  <n>  special 

case.  Thus there are benefits to operating at optimum <n>. 

It is instructive to consider that the mechanism by 

which  <n>  is selected for any given received optical power 

P  is made by selecting T.  The relationship between  <n>, 

i   •• -inf-Tnr"nrrnir-^-j'-^"^— -—- — ^JJU»J 
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P and T  is given by 

<n> PT 
h<v- 

where  <v>  is the average optical frequency.  This fre- 

quency is given by the center frequency of the received 

optical band.  Typically this will be the band center of 

any optical preselector filter which precedes the detector. 

For minimum noise and large m fields the average 

number of photons received in interval T  is given approxi- 

mately by 

PT <n>  = h<v> 
1 J_J2  
2 11 + 6r 

We are most interested in detecting temporally coherent 

light at low signal levels and at low signal/noise (small 

r).  Thus for any given power level  P, the optimum choice 

of T  is 

m    h<v> /— T  5 -jf-  ,m 

Of course, this result was obtained without regard 

to any constraints imposed by the detector bandwidth or 

the speed of the sampling electronics.  In any practical 

implementation, operation at the minimum noise condition 

may not be feasible. 

 •••mir i 
-•••+  
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7.  SUMMARY OF RESULTS 

This report has described studies of a method of 

detecting temporally coherent light in a noncoherent back- 

ground.  It has been shown that the arrival rate statistics 

of photons are different for coherent and noncoherent 

light.  In this study the probability density function 

p(n)  for the member n of photons which arrive in an 

interval T is a function of the ratio r of the average 

coherent to noncoherent photons. 

In addition it has been shown that the various 

moments of p(n)  depend upon r.  From this observation 

a post signal processing signal S has been defined: 

s  - vjai. i 
<n> 

where 

V(n)     =     <(n  -  <n>)2> 

and where  < >  indicates expected value.  It has been 

shown that S  is a function of r.  Moreover it is shown 

that in principle it is possible to distinguish the 

presence of temporally coherent light in a noncoherent 

background  (r > 0)  from purely noncoherent light  (r = 0) 

A perfect measurement of  r would require a zero 

error measurement of  S.  Unfortunately it is impossible 

56 
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to measure S without error.  Rather, S can only be 

estimated from a finite sample space of measurements of 

the number of photons.  This estimate of S  is denoted 

S: 

bN(n)  _ 

aN(n) 

where 

bN 
• 1           " (nm  - m V2 

<»-«   m^l 

aN 
= 1     N 

N       -i     m m=l 

i  = number of photons received in the 
mth  sampling interval 

In addition this study has shown that the error in 

this estimate of S  as measured by its variance V(S) 

is given approximately 

V(S)  • -2  
N<n> 

where  u.  and u2  are the fourth and second central 

moments of p(n)  respectively.  In this approximation it 

has been assumed that N  is large enough that 

aN  •  Lim a>; =  <n> 
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The post signal processing noise N  associated 

with a measurement of S  is given by 

-  Vv N   = W(S)  = a(S) o 

The required size of the sample space N  for detection 

of coherent light at a given  r  is determined for a given 

allowable error rate.  The feasibility of this proposed 

signal conditioning is assessed by determining the physical 

parameters involved in the required sample space size.  The 

limitations on the feasible sample space size include:  the 

memory capacity and computation speed of the processor; 

the sampling rate, detector bandwidth, and coherent signal 

duration. 

It has been shown that for small  r unimodal fields 

the required sample space size is given by 

- « H 

If the memory capacity is to be limited to about  16 K, 

then the minimum r which can be detected is given by 

min r ~     0.11 

Next this study considered multimode fields in which 

m > 100. It was shown that relatively large <n> (about 

100) the required sample space size is given by 

' 

.    .....      ...... i. ..    • - - 
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- - »&? M 
As an illustrative example, it was shown that for min 

r ~ 3  the required sample space size is: 

N ~     7500 

Although a memory capacity of 7500 is relatively 

small, increasing N to 16 K only reduces min r to 

about 

min r J =2.3 
I N = 16 K 

Thus it appears that the present method when applied to 

multimode fields having large  <n>  is limited to a signal/ 

noise of about 7 dB. 

On the other hand it was shown that there is an 

optimum <n> which minimizes noise.  For m > 1000  that 

value of  <n>  is given by 

1 / m 
n  ~  2 \1 + 6r 

For this case it was shown that the required sample space is 

given by 

3  1 

N 50 (l • Srfm2  (i-l-S) 

If the memory capacity is limited to about  16 K, then the 

minimum detectable r (for P£ -  0.01) is given by 

"'"*     -••-    I Mill    Ml __ &  
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mm r 1.4 

This is equivalent to about  1 dB  signal/noise which is 

roughly a  6 dB  improvement over the large  <n>  case. 

Thus it has been shown that there are benefits to opera- 

tion at optimum <n>. 

 '•-'• 
•«- •• - .•....- - — ..-. .. --. j^i^l 
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APPENDIX A 

It is the purpose of rhis appendix to derive the 

recurrence relations for the moments of the probability 

density function p(n): 

P(n) = (n+m-l) ! \i+y/ \l m) 
\1+l)  Tm-1 

Ln ~(Z) 
(A.l) 

where 

X — <n > c 

y = <n.> 

z = 
xm 

y(y+m) 

m • number of modes 

.m-1 (Z)  = Laguerre polynomial 

For the purpose of establishing recurrence relations 

it is helpful to compute the following derivatives: 

z''-(&w-7föT^&rte) 
3P 
3 

\1+m7Tm-l L^_J-(Z)   (A.2) 

3P _ 
3y *' (n+m-l)! "n Lm_1(Z) •HTW-Hr1» x  1 

2 m 

y(l+2\(„+m-l)|\ V     \   »/ n 

K) 
(A.3) 
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For reasons which will become apparent we consider 

the following expression: 

*H?)Si + *H) 3P 3y 
_   *(H?) 

1 +1 m 
P(n) 

- mx 

U) 

-m V1+m7 Tm-1 Ln  (Z) 

2 ,^m m (1+£) 
p(n) + a 

a = 

-  \  » / + n - y + 

(Z) 

1 + 1 m 
P(n) 

- x 1+£ + m f+m) 
+ n - y)p(n) 

= [ n - (x+y)]p(n) 

The recurrence relation can be obtained from Eq. A.7, 

by multiplying both sides by n  and summing over all 

oossible  n. 

1 

(A.4) 

I 

(A.5) 

(A.6) 

(A.7) 
fj 

- • - - • 

• ! 

y 
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•   Xll + 

This can be rewritten in a more easily recognized form: 

<nk+1> =  <nk>(x+y)   xfl 4+^)5#+Ki+")^ 
Equation A.9 is the recurrence relation which we are 

seeking. 
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APPENDIX B 

It is the purpose of this appendix to derive an expres- 

sion for V(S).  This represents the mean squared noise 

associated with the proposed signal processing method.  In 

the text it is shown that 

V(S) ^4 : 2u2 

N<n>2 
(B.l) 

where 

u4 = <(n - <n>) > 

y-  =  <(n - <n>) > 

These last central moments of p(n)  can be computed from 

the first four moments of p(n)  using the recurrence rela- 

tion of Appendix A: 

and 

4     3        2   2        3      4 
u.  =  <n> - 4n <n> + 6n <n>  - 4n<n>  + <n> > 4 

4 3        2  2        4 <n > - 4<n><n > + 6<n> <n > - 3<n> 

U2 
=  <n > - <n> 

In Appendix A it is shown that 

(B.2) 

i 
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<nk+1> =  (x+y)<nk> + 
/i 2y\ 3<n

k> 

*H *4 
(B.3) 

<nc> 

<n. > 
i 

<nc + n±> 

m = 

x 

y 

x + y = <n> 

number of modes 

The required moments can be found in ascending order from 

2 Eq. B.3.  First we compute  <n >: 

n2  »  (x+y)2 + «fa) * yfa) (B.4) 

For the purpose of computing  <n > we find the derivatives: 

3<n2> 
3x 

3<n2> 

=  2(x+y) + 

3y =  2(x+y) + 2 

t*) 
| + (l+^\ m   I  m / 

(B.5) 

(B.6) 

We then obtain 

<n  >    =     (x+y) •[•w 
+ y(1+5)  3<x+y> + (1+i?) + Wi+ m   I H 

(B.7) 

. .    1   ... 
 -^-----        • —1—-- ,.—.,,.,,. ..»WM'ja j 
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4 
The derivatives of Eq. B.7 are needed to find  <n > 

=     3(x+y)"   +   3 1: «<n~:-     =     ^lv+vl2   +   Tlvli+iZ)   +   v   IL+Z\\ (B.S) 
3x 

+  2m" 

^)[s(*r>*(i*aj| 

a<"3>     =     3(x+y)2  +  3l*fl+^   + vfl+^ll (B.9) 

m 

From B.l,   B.8,   and  B.9  we  obtain 

<n4>     =     3(x+y)2 

+     3(x+y) 

m 

4*^] + ^H)[x + y + i + ^] 

• 

- 

: 

•     (x+y)4  +  3(x+y)2lvli+2Z»   • v/l+^l (B.10) 

 1    -<II1   •""»••'"•"'     "I „••—, • ,-«.,,   •-          .,.-.,.; -. — -:,••...     ....,.-,,  .. . .1—.^--   .^Mt^MüMOM 
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+ 2 xv m M (x+y) + (x+y) HJtHHHI 
We obtain \x.     by substituting Eq. B.10, B.7 and B. 4 

into Eq. B.2; 

U4  =  3 

+ 6xy 

Similarly we find y. 

w2 = y H+*H 
The post signal processing noise involves the binomial 

2 y. - 2y~ which is given by 

y* - 2y: 

/1+ii\
2 ; & /1+3A 

l   m /    m I  m I 

+ 6xy 

The noise associated with the proposed signal detection 

method is most easily interpreted if we eliminate x and 

y  from B.13 in favor of system variables.  We define the 

input signal to noise ratio  r as 

'  ^ 

(B.ll) 

(B.12) 

(B.13) 

^^^^**'    •—• - • • -in mi-ttfrMT^M^WM 
"<-a^" •••*•  " ---•- . _ -^. .•-.^ , . l^^iM..  .»^M^a 
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r = 
<n > c 
<ni> 

Noting that  <n> = x + y we find 

x  = 

y = 

r<n> 
1 + r 

<n> 
1 + r 

Substituting these expressions for  x  and y  into Eq. 

B.13 we can obtain  v(S)  from Eq. B.l: 

V(S)      = 
N< 

1      jfr<n>    /,     2<n>  \ 
n>2)[l  +  r\1+m(l+r)/ 

-±*L  Ai   <n>-    ^l["r<n>/li   2<n>-^   +     3<n>    /•      <n>     \ ]TTT\1+m(l+r)/|ll + rlf+ni(l+r)/   + n(l+r) \L m(l+r)J 

The  post  signal  processing noise     N       is  given by 

No    'V (S) 

,..„...,--   .;.„^„',rtl.> ,••,.,,.*  ...... |n|. J 



APPENDIX_C 

It is the purpose of this appendix to show that there 

is an optimum average number of received photon  <n>  in 

the sampling interval which minimize the post signal 

nrocessing noise N .  It is shown in the text that o 

No  = V V(S) 

and as V(S)  is monotomic nondecreasing function of 

V(S) >_ 0, then the value of  <n> which minimizes V(S) 

also minimizes N . o 

The expression derived for V(S)  in Appendix B is 

complicated and somewhat difficult to interpret.  On the 

other hand, this expression has an upper bound which very 

closely approximates V(S)  for a large number of modes 

m.  Recall that any practical implementation of this method 

2       3 involves m of the order of  10  to  10 .  Thus it is 

meaningful to consider the upoer bound for the purpose 

of finding optimum  <n>. 

In Appendix B it is shown that V(S)  is given by 

1   •   r<n> /,  2<n> \ 

N<n>2 L1 + rV n<1+rV 
V(S)     =    —£-*   T^r*r l+=TTT=r (c.i: 

<n>    /      <n>    \ir r<n>/      2<n> \ 3<n>    /      <n>     \ 
1  +  r \f m(l+r)/|ll  +  ry m(l+r)J       m(l+r) \x  m(l+r)/ 

70 
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/1+  2<n>   \21       6r<n>2/      <n>     \(      2<n>  \ 
\i+m(l+r)j J        (1+r)2\A nd+r)^1 n(l+r)y 

The   following  inequality  can be written  for Eq.   C.ls 

V(S)      < N<n>2|L       \      m    / 

+    (1+^)2]]+6^2(1+^)(1+^) 
<     \1+2 IS    l2<n>r<n>fl^ +  1 + ^S>1 

N<n>2 [       \   m/ m    J 
6r 
N 

where we have used the inequality 

1 + <£>  <  i + 2in> 

For convenience we define the upper bound for V(S)  as 

A/N: 

V(S)  <  g 

where 

A =  2 fr-*?« 1 + - + 6r + m <n> / 

(C.2) 

(C.3)  i 

(C.4) 

(C.5) 
i 

Letting the value of <n> which minimizes A be denoted 

a we obtain 
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A =  l1*^1 + 6r + "+ a) (C6) 

The value of which minimizes A can be found by differen- 

tiating; 

||    =     o     =     i(l  + ^Wl  • 6r   • | + i\ 
3a m\ m/\ mal 

.Li 2 

*M-M 
where 

Solving for a yields 

a(m) 2 fl + 6r 

m 

The result is useful for interpreting the optimum value 

of  <n>. 

(C.8) 

b =  1 + | + 6r (C.9) 

-1 + /l + 4bn ._ ._, 
a  =   ^  (CIO) 

For large m (the most important practical case)  a (m) 

anDroaches 

i 

(C.7) 




